Ongoing Research at MBE

  • Nanowire Field Effect Transistor with epitaxial Gd2O3 as wraparound gate oxide
    In this project, which is being carried out together with colleagues from the Indian Institute of Technology Bombay (https://www.iitb.ac.in/), the aim is to use functional epitaxial oxides for the production of Gate All Around (GAA) transistors. Nanowires of gallium nitride, which have extremely high charge carrier mobilities, are to be used as channel material. Within the framework of this project, the MBE will carry out the epitaxial growth of the oxide layers, while the IITB partners will manufacture the nanowires and electrically characterise the structures.
    Led by: Prof. H. Jörg Osten
    Year: 2020
    Funding: DAAD
    Duration: 2020 - 2023
  • Understanding and engineering polysilicon based passivating contacts for photovoltaic applications
    In this project, which is being carried out jointly with colleagues from the Australia National University in Canberra (https://www.anu.edu.au/), the aim is to investigate passivating contacts based on polycrystalline silicon. Such contact structures consist of a thin silicon oxide that is produced either chemically or dry thermally on a silicon wafer. A thin layer of polycrystalline silicon is deposited on this oxide. Understanding the function and high-quality production of such contact structures have been the subject of research at MBE for many years. Within the framework of this project, the long-term stability and the ability of the polycrystalline silicon to bind metallic impurities or to deactivate them electrically are to be investigated.
    Led by: Dr.-Ing. Jan Krügener
    Year: 2023
    Funding: DAAD
    Duration: 2023 - 2024
  • Preparation and characterization of photonic structures for use in future silicon solar cells
    Modern silicon solar cells today achieve record efficiencies of up to 26.8 %. The main limitations compared to the theoretical limit for silicon solar cells of approx. 29.5 % are the intrinsic recombination losses in the silicon volume and the recombination on surfaces and contacts. The latter have been drastically reduced in recent years through the introduction of very effective selective contact layers. A reduction in the unavoidable intrinsic volume recombination can only be achieved by using thinner silicon wafers, but this has a direct negative impact on the achievable photocurrent density and therefore on the efficiency of the solar cell, as the volume of the silicon absorber available for photoabsorption is also reduced when its thickness is reduced. For some years now, structures based on photonic crystals have been investigated that make it possible to achieve high photocurrent densities even with thinner silicon wafers. As has been shown theoretically, photonic crystals on the front side of silicon solar cells allow increased absorption of the incident light and thus enable significantly higher photocurrents and thus higher efficiencies than predicted by the classical theoretical limit. The photonic crystals investigated to date against this background consist of regularly arranged inverted pyramids with edge lengths of a few micrometres. The inverted pyramids are produced using selective, highly anisotropic wet chemical etching processes through a mask of silicon oxide. The first solar cells with photonic crystals on the front surfaces have already been produced on a laboratory scale in a co-operation between MBE and ISFH. However, these were still limited by local inhomogeneities in the manufacturing process of the regular inverted pyramids. As part of the project planned here, conditions are initially to be established that enable the defined production of large-area photonic crystals on silicon. Initial preliminary work has already been carried out at MBE for this purpose, based on structure transfer using conventional photolithography. The process developed in this way will then be systematically varied and the structures produced will subsequently be characterised optically (transmission, reflection) and structurally (scanning electron microscope, atomic force microscope). The results achieved in this way will be used to better estimate the realistically achievable efficiency potential of silicon solar cells with photonic crystals. In addition, new sub-processes are to be developed that can improve the production of photonic crystals. This includes, for example, replacing photolithography with laser lithography or the use of dry etching processes instead of the wet-chemical production used to date. In the future, the solar cells with photonic crystal structures produced as part of this project can also be used as bottom cells for tandem cells.
    Led by: Dr.-Ing. J. Krügener
    Year: 2024
    Funding: Niedersächsisches Ministerium für Wissenschaft und Kultur
    Duration: 2023 - 2027